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ABSTRACT

We apply instance-based machine learning in the form of a k-nearest neighbor algorithm to the task of estimating
photometric redshifts for 55,746 objects spectroscopically classified as quasars in the Fifth Data Release of the
SloanDigital Sky Survey.We compare the results obtained to those from an empirical color-redshift relation (CZR).
In contrast to previously published results using CZRs, we find that the instance-based photometric redshifts are
assigned with no regions of catastrophic failure. Remaining outliers are simply scattered about the ideal relation, in a
manner similar to the pattern seen in the optical for normal galaxies at redshifts z P1. The instance-based algorithm is
trained on a representative sample of the data and pseudoYblind-tested on the remaining unseen data. The variance
between the photometric and spectroscopic redshifts is �2 ¼ 0:123 � 0:002 (compared to �2 ¼ 0:265 � 0:006 for
the CZR), and 54:9% � 0:7%, 73:3% � 0:6%, and 80:7% � 0:3% of the objects are within�z < 0:1, 0.2, and 0.3,
respectively. We also match our sample to the Second Data Release of the Galaxy Evolution Explorer legacy data,
and the resulting 7642 objects show a further improvement, giving a variance of �2 ¼ 0:054 � 0:005, with 70:8% �
1:2%, 85:8% � 1:0%, and 90:8% � 0:7% of objects within�z < 0:1, 0.2, and 0.3. We show that the improvement
is indeed due to the extra information provided by GALEX, by training on the same data set using purely SDSS
photometry, which has a variance of �2 ¼ 0:090 � 0:007. Each set of results represents a realistic standard for
application to further data sets for which the spectra are representative.

Subject headinggs: catalogs — cosmology: miscellaneous — methods: data analysis — quasars: general

Online material: color figures

1. INTRODUCTION

Photometric redshifts, both from empirical training sets and
template spectral energy distributions (SEDs), are important for
the application of objects to the study of cosmology, as they en-
able the exploration of large regions of space that are otherwise
inaccessible. This is achieved both in cosmological volume through
a higher number density of objects and in parameter space through
finer binning.

After the early work of Baum (1962), Koo (1985), and Loh&
Spillar (1986), a variety of techniqueswere extensively developed
(Gwyn & Hartwick 1996; Lanzetta et al. 1996; Mobasher et al.
1996; Sawicki et al. 1997; Connolly et al. 1998; Wang et al. 1998;
Benı́tez 2000) on galaxies in the deep, but narrow, Hubble Deep
Field North (HDF-N; Williams et al. 1996). These different
methods were shown to be mutually consistent and relatively
accurate in blind testing (Hogg et al. 1998).

More recently, wide-field surveys with multicolor photometry
and fiber-based spectroscopy have generated large, uniform sam-
ples that enable photometric redshifts to be estimated for both
galaxies and quasars. For galaxies in these surveys at redshifts of
z P 0:4, (e.g., Brunner et al. 1997, 2000; Tagliaferri et al. 2002;
Firth et al. 2003; Vanzella et al. 2004; Ball et al. 2004; Collister &
Lahav 2004; Wadadekar 2005), a number of results have con-
verged to an rms dispersion of � � 0:02 (i.e., �2 � 0:0004) be-
tween spectroscopic and photometric redshifts, with no serious
systematic effects. It should be emphasized, however, that galaxy
photometry in these previous analyses has been very good, typi-
cally a few percent or better. Way & Srivastava (2006) show

similar results when combining the SDSSDR2 (Abazajian et al.
2004),GALEXGR1 (Martin et al. 2005) and the extended source
catalog of the TwoMicron All Sky Survey (Skrutskie et al. 2006).
The results at moderate redshifts have also been successful, with
luminous red galaxies (Eisenstein et al. 2001) in the SDSS trained
with redshifts in the 2SLAQ survey (Cannon et al. 2006) having
an rms of � ¼ 0:049 (Collister et al. 2007) for a sample at
0:4 < z < 0:7 (see also Padmanabhan et al. 2005).
At high redshifts, the number of spectra available is smaller

and, in addition to the HDF-N, there have been analyses of other
deep fields, such as the HDF South (Williams et al. 2000) and the
Hubble Ultra Deep Field (Beckwith et al. 2006). In the latter, Coe
et al. (2006) show an accuracy of �z ¼ 0:04(1þ z) for z P 6.
In contrast to galaxies, which show small numbers of outliers,

but no significant groups of outlying objects, all wide-field quasar
photometric redshift results to date (Richards et al. 2001; Budavári
et al. 2001;Weinstein et al. 2004, hereafter W04;Wu et al. 2004;
Babbedge et al. 2004) suffer from regions of ‘‘catastrophic’’ fail-
ure, in which groups of objects are assigned a redshift very dif-
ferent from the true value. The first four use SDSS data, while the
last uses the ELAIS N1 and N2 fields and the Chandra Deep
FieldNorth.W04 implement an empirical method based on color-
redshift relations, which we use as our baseline. Catastrophic
failures severely hamper cosmological investigations that use
photometrically selected quasar samples (e.g., Myers et al. 2006,
2007a, 2007b), particularly by assigning objects at z > 2 to z < 1
and vice versa; thus, eliminating these regions is important.
Reasons for the failures, depending on the details of the way a
particular data set is chosen, include quasar reddening, degener-
acy in the color-redshift relation, and superimposition of emission
from another object, for example, an extended host galaxy.
Results using a more restricted parameter space (Wolf et al.

2003), defined by 17 < R < 24 and 1:2 < z < 4:8 in the 17 filter
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set of the COMBO-17 survey (e.g., Wolf et al. 2004), have met
with more success. However, the sample size, 192 quasars, is
small and limited in angular extent, and therefore is of limited
cosmological applicability.

In this paper we use optical data from the Fifth Data Release
of the SDSS and near- and far-UV data from the Second Data
Release of the Galaxy Evolution Explorer (GALEX; Martin et al.
2005) to assign photometric redshifts to quasars. Our results im-
prove upon previous wide-field techniques by eliminating regions
of catastrophic failure, resulting in a distribution of quasar pho-
tometric redshifts comparable to those obtained for galaxies. We
do not address the application of the photometric redshifts to any
parameter space beyond that represented by the training and blind
test sets.

2. DATA

We use data from the Fifth Data Release (DR5; SDSS collab-
oration, 2007, in preparation) of the Sloan Digital Sky Survey
(SDSS; York et al. 2000) and the Second Data Release (GR2) of
the Galaxy Evolution Explorer (Martin et al. 2005). We select
primary nonrepeating observations of objects classified as quasars
(specClass = qso or hiz_qso) in the specObj view of the
SDSS DR5 Catalog Archive Server database. The hiz_qso ob-
jects are at redshifts of z > 2:3 and trigger the use of the Ly�
finding code in the SDSS spectroscopic pipelines (J. A. Frieman
et al. 2007, in preparation; D. J. Schlegel et al. 2007, in prepa-
ration).We also require that the spectroscopic flags zWarning =
0 and zStatus > 2, and that all input magnitudes are not at
clearly unphysical extreme values, being in the range 0Y40. The
resulting sample contains 55,746 quasars.

In addition to the SDSS sample, the SDSS objects are cross-
matched to the primary photometric objects in the photoObjAll
view of the GALEX GR2 database. We find 8174 matches within
an RA + decl. tolerance of 400. Of these 532 have more than
one match and the poorer match is rejected, leaving an SDSS+
GALEX sample of 7642 unique matches. For the GALEX ob-
jects, we require primary_flag = 1, a detection in both near
and far-UV bands, magnitudes again in the range 0Y40, and the
flags fuv_artifact and nuv_artifact to be 0. Throughout,
the SDSS magnitudes are corrected for Galactic extinction us-
ing the dust maps of Schlegel et al. (1998) and theGALEX mag-
nitudes using the B� V (e_bv) term inferred from these maps
using the standard formula of Cardelli et al. (1989).

The resulting samples of 55,746 and 7642 objects form training
sets used as input for the learning algorithms. The full set of object
attributes for the SDSS sample consists of 16 training features.
These are the colors u� g, g� r, r � i, and i� z, where the
SDSS bands u, g, r, i, and z are given for each of the four mag-
nitude types, PSF, fiber, Petrosian, and model (Stoughton et al.
2002). For SDSS+GALEX, we add the colors fuv� nuv and
nuv� u, where u is given in each of the four SDSS magnitude
types, resulting in 21 training features.

In addition to the SDSS and SDSS+GALEX data sets, we also
analyze the SDSS+GALEX sample of objects, but using only
SDSS features. This data set, referred to as ‘‘GALEX-SDSS-
only,’’ enables us to quantify the level of improvement in
SDSS+GALEX seen from the addition of theGALEXUV features,
as opposed to possible improvement due to the sample only
containing quasars that appear in both SDSS and GALEX.

3. ALGORITHMS

We implement instance-based learning on the SDSS, SDSS+
GALEX, andGALEX-SDSS-only data sets. The results are com-
pared to those on the same data for an empirical color-redshift

relation containing full probability density functions (N. E.
Strand 2007, in preparation).We also study the utility of subsets
of the full set of training features using genetic algorithms.

The machine learning is implemented in the Java environment
Data-to-Knowledge (Welge et al. 2003). It is optimized through
use of nationally peer-reviewed allocated time on the Xeon Linux
cluster Tungsten at the National Center for Supercomputing Ap-
plications. This enables an extensive exploration of the parameter
space describing the training features of the objects and the set-
tings of the learning algorithms.

3.1. Instance-based Learning

Instance-based learning (IB; e.g., Aha et al. 1991; Witten &
Frank 2000; Hastie et al. 2001), is a powerful class of empirical
machine learning methods that to date has not been extensively
utilized on large astronomical data sets due to its computational
intensity. Two examples where the method has been used are
Budavári et al. (2001) andCsabai et al. (2003), who both applied it
to the SDSS Early Data Release (EDR; Stoughton et al. 2002).
However, they only utilize single nearest neighbors, and in ad-
dition the DR5 data set analyzed here is approximately 15 times
the size of the EDR. Here, through the use of Tungsten (x 3), we
are able to realize the full potential of the algorithm, via the use
of the k-nearest neighbor method (e.g., Cover & Hart 1967).

In its simplest form, the ‘‘training’’ of the algorithm is trivial
and involves simplymemorizing the positions of each of the ex-
amples in the training set. For each object in the testing set, the
nearest training example is then found, and the predicted value,
either a classification or a continuous value, is taken to be that of
the training example. Thus, the computational expense is incurred
at the time of classification, as a large number of distance calcu-
lations must be performed. However, the method is powerful
because it uses all of the information available in the training
set, rather than a model of the training set as is typically used by
most other learning algorithms.

There are a number of simple refinements to this method,
which in practice result in large improvements in performance:
(1) Instead of the nearest neighbor to the testing example, the k
nearest neighbors can be found, and the distances can beweighted
using a predictive integration function to produce a weighted
output. This function, d , takes the form

d ¼
Xk

i

1

x
p
i

;

where the xi are the Euclidean distances to the neighbors and the
exponent p can take on any positive value, typically, but not
necessarily, an integer. (2) The input features can be standardized
such that the mean and variance of each are 0 and 1, respectively.
This prevents the training from being dominated by features with
larger numerical values or spreads. Alternatively, one could
also normalize the range of features to be 0Y1. (3) Objects in the
training set can be allocated to collective regions of parameter
space, which can considerably reduce the required number of
distance calculations.

Of the methods described, we implement (1) and (2), but not
(3), as we wish to use the full information available in the training
data.We optimize the values of k and p and standardize all train-
ing features. Further refinements can also be made for objects that
have noncontinuous values, such as a classification or missing
data. However, in this paper all values are considered; i.e., the
training features and the spectroscopic and photometric red-
shifts are continuous.
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3.2. Color-Redshift Relation

Wehave implemented the color-redshift relation (CZR)method
of W04 on the same data as the IB. This enables a direct com-
parison of the performance of the two methods. The CZR estab-
lishes an empirical relation between the spectroscopic redshifts
and the colors of the training set. The maximum likelihood red-
shift probability density function (PDF) is then found for each
object in the test set.

3.3. Genetic Algorithms

The methods above select and optimize a learning algorithm
for a given set of training features. However, it is possible that
different subsets of the features available will produce better
results. In particular, the results for instance-based learning can be
made worse by noise in the training set or by irrelevant training
features. To explore this possibility, we implement a binary ge-
netic algorithm on the training feature sets.

A genetic algorithm (GA; e.g., Holland 1975; Goldberg 1989;
Haupt &Haupt 1998) mimics evolution, in the sense that the most
successful individuals are those that are best adapted for the task
at hand. We implement the binary genetic algorithm, in which
each individual is a string of 0’s and 1’s, which representswhether
or not to use a particular input feature (in our case, the 16 colors).
An initial population of random individuals is created, and the
IB is run using the features selected. The result, in this case
the variance between photometric and spectroscopic redshift, is
the fitness of that individual. The individuals and their fitnesses
are then combined to produce new individuals, and those with
higher fitnesses are favored. In principle, a good approximation
to the best set of features to use as the training set should be
selected with this approach.

The combination involves identifying the best individuals to
breed via tournament selection, in which a specified number of
individuals from the population are selected and the best is put
in the mating pool to be combined with other individuals. Two in-
dividuals are combined using one-point crossover, in which a seg-
ment of one is swapped with that of the other. To more fully
explore the parameter space and prevent the algorithm from con-
verging too rapidly on a local minimum, a probability of mutation
is introduced on the newly created individuals before they are
processed. This is simply the probability that a 0 becomes a 1, or
vice versa.

An approximate number of individuals to use is given by

nin � 2nf log nf ;

where nf is the number of features. For the SDSS and GALEX-
SDSS-only, nf ¼ 16 and for SDSS+GALEX, nf ¼ 21. Hence,
nin � 39 and 56, respectively, for these two values of nf . The
algorithm converges, i.e., finds the best individual and hence
the best training set, in

nit � �nf log nf

iterations, where � is a problem-dependent constant. Generally,
� > 3, giving an expected value for our data of nit � 58 for
nf ¼ 16 and nit � 83 for nf ¼ 21. We employ this number of
iterations with larger numbers of individuals4 to be sure that the
algorithm has converged. Further information on genetic al-
gorithm design can be found, e.g., in Goldberg (2002).

Our GA is implemented on the IB for each of the SDSS,
SDSS+GALEX, and GALEX-SDSS-only data sets. The settings
of these algorithms are fixed for the duration of the GA iteration.
It is possible in principle to combine the optimization of the
learning algorithm and the feature set; however, we defer this
analysis to a later paper.

3.4. Training and Quality of Redshifts

The IB and CZR are supervised learning algorithms; they are
given a training set of objects and attempt tominimize a cost func-
tion that describes the quality of the predictions on a separate
testing set. For IB, the cost function is given by the variance be-
tween the photometric and spectroscopic redshifts for objects
with spectra,

h(�z)2i � h�zi2;

where �z ¼ jzspec � zphotj, zspec is the spectroscopic redshift
value, and zphot is the photometric redshift prediction made by
the learning algorithm. The second term in the variance equation
is small.
The value of the variance is dominated by the outliers. How-

ever, in our case, this is a desirable property, because it is these
objects that we wish to pull in the most toward the correct values.
The dominance of the outliers renders the variance susceptible
to variations in this population. We therefore quote errors on all
of our blind test variances, derived from splitting the population
using multiple random seeds (see below). For the CZR, the cost
function is the likelihood of the PDF.
Instance-based learning, like any supervised machine learning

algorithm, is susceptible to incompleteness and noise in the
training set. At present, the SDSS DR5 is by far the largest and
most homogeneous quasar data set available, and it has a high
completeness (e.g., Vanden Berk et al. 2005). Other available data
sets are either not as deep, smaller (e.g., Croom et al. 2004), or
deeper but orders of magnitude smaller (e.g., Wolf et al. 2004).
One could prune noisy exemplars; however, it is difficult to
meaningfully define what makes a noisy or sparsely populated
region of parameter space, and pruning particular regions could
introduce new and poorly defined biases. The use of multiple
nearest neighbors smooths the noise, and the blind test results
address both incompleteness and noise by presenting realistic
results on unseen data.
The distance measure parameters of a number of nearest

neighbors and the distance weighting assume that the input train-
ing features are uncorrelated; however, given that we repeat the
same four colors in fourmagnitude types and that a set of features
is always derived from a particular object, the input features will
always be correlated, both in magnitude type (e.g., PSF u� g is
correlated to fiber u� g, and so on) and in color (e.g., PSF u� g is
correlated to PSF g� r, and so on.) Correlated input features are
therefore unavoidable; we feel, however, that our algorithmic
approach is acceptable, because we select the parameters to
produce the optimal blind test result.
Different splits of the training set are investigated at various

points in the learning process, giving four adjustable ratios:
(1) The quantity rtrain is the ratio between the data used as the
training set and for testing the algorithm’s performance according
to the cost function to adjust the final model settings (for IB there
is no adjustment, so the ratio just affects the performance through
the information available). (2) The quantity rblind is the ratio of
the whole set of data used in training and testing to that unseen
by the algorithm until it is applied, as it would be to new data

4 For SDSS+GALEX, 300 and for the other two data sets, 200. These
numbers were selected for other tests not reported here and simply strengthen
the null result.
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from another survey; this is the pseudoblind test. (3) The
quantity rbag is the ratio of the data used in each baggedmodel to
the rest of the training data, where the training data is rtrain of the
whole data set. (4) The quantity rcross is similar, but for cross-
validation. The latter is distinguished from bagging because it
takes different random subsamples of the whole rtrain training
and 1� rtrain testing set, whereas bagging subsamples rtrain.

The value for which we quote results for all of these ratios is
80 : 20. For application to new data not used here, the value of
rtrain would be 100%, to maximize the information available.
This is the standard �2 reported in the literature for CZR tech-
niques, but its value would be meaningless for instance-based
approaches.

For IB, the variances obtained are quoted from the pseudoblind
test, as this represents the most realistic standard of performance
available from within the SDSS and GALEX data sets to be ex-
pected on new data. The value of rblind is always such that the
training data are representative of the full data set.

We quote the mean and standard deviation of the best variance
from 10 training runs with differing random seeds for rblind. Each
run produces a grid of models with the range 1 � k � 50 and
1� p � 10, where k is the number of nearest neighbors and p is
the exponent in the distance-weighting function (x 3.1). Integral
values of k and pwere used, although this is not a requirement.We
use positive values of p, as negative values would result in objects
other than the nearest neighbor being given the highest weighting,
which would be unphysical, as increasingly large values of k
would be given an ever higher weight. We investigated bagging
and cross-validation using values of rbag and rcross�val of 80 : 20
and 50 : 50, but these were not found to be necessary for IB.
Other measures, such as�z/(1þ z) and the percentage of objects
within�z < 0:1, 0.2, and 0.3, are also given for comparison to
other work. We do not quote any results in which there is any
overlap between the training and testing data.

The comparative CZR results were obtained by using a 10-fold
bootstrapped pseudoblind test, again in the ratio rblind ¼ 80 : 20.

4. RESULTS

We now describe results for the full SDSS DR5, SDSS
DR5+GALEX GR2, and GALEX-SDSS-only data sets, all of
which are summarized in Table 1.

4.1. SDSS DR5

We found that the ideal parameters are 22 � 5 nearest neigh-
bors (NN) and a distance weighting (DW) of 3:7 � 0:5. In the
pseudoblind test on the unseen 20% of the data, the best vari-
ance between the photometric and spectroscopic redshifts is
0:123 � 0:002. A comparison between the photometric and spec-
troscopic redshifts is shown in Figure 1, and the effect of varying
the NN and the DW for the pseudoblind test is shown in Figure 2.
We find that 54:9% � 0:7%, 73:3% � 0:6%, and 80:7% � 0:3%

of the objects are within�z < 0:1, 0.2, and 0.3, respectively. The
variance weighted by redshift is �2

z ¼ 0:034 � 0:001, and the
mean �z/(1þ z) ¼ 0:095 � 0:001.

Because the values of NN and DW used here are discrete (in
principle, they can be continuous, but that was not attempted),
the results presented in Figure 1 were obtained with the values
of NN, DW, and the blind test set random seed that gave the best
variance in its grid that was closest to the mean. Here these
values are NN ¼ 22, DW ¼ 4, and a random seed of 8 (for the
seeds we used the integers 0Y9). The variance is 0.1240, which
is consistent with the mean variance quoted.

Our key result, shown in Figure 1, is the absence of regions of
catastrophic failure—there is no upturn in a histogram of �z
values at large �z, just a smooth decline such that few objects
are outliers. This is in contrast to previous results for quasar
photometric redshifts, which, while showing a comparable
spread of objects with low�z, show outlying regions of objects

TABLE 1

Summary of Photometric Redshift Samples Described in This Paper

Data Set Method Variance Variance/(1þ z) Mean �z/(1þ z)

�z < 0:1

(%)

�z < 0:2

(%)

�z < 0:3

(%)

SDSS.............................. IB 0.123 � 0.002 0.034 � 0.001 0.095 � 0.001 54.9 � 0.7 73.3 � 0.6 80.7 � 0.3

SDSS+GALEX ............... IB 0.054 � 0.005 0.014 � 0.002 0.060 � 0.003 70.8 � 1.2 85.8 � 1.0 90.8 � 0.7

GALEX-SDSS-only ........ IB 0.090 � 0.007 0.022 � 0.001 0.081 � 0.003 62.0 � 1.4 78.9 � 1.0 85.2 � 1.2

SDSS.............................. CZR 0.265 � 0.006 0.079 � 0.003 0.115 � 0.002 63.9 � 0.3 80.2 � 0.4 85.7 � 0.3

SDSS+GALEX ............... CZR 0.136 � 0.015 0.031 � 0.006 0.071 � 0.005 74.9 � 1.4 86.9 � 0.6 91.0 � 0.8

GALEX-SDSS-only ........ CZR 0.158 � 0.013 0.041 � 0.004 0.081 � 0.004 74.1 � 0.8 86.2 � 0.7 89.7 � 0.6

Fig. 1.—Contour plot of quasar photometric redshifts assigned by the in-
stance-based learner vs. spectroscopic redshifts for the SDSS DR5 pseudoblind
testing sample of 11,149 of 55,746 quasars described in the text. For contouring,
the objects are placed in bins of 0.05 in redshift, although the values on both
axes are continuous. The variance between the two measures over the whole
redshift range is 0:123 � 0:002. Compared to Fig. 3, there are no regions of
‘‘catastrophic’’ failure, in which objects are assigned a redshift very different
from the true value, just a smoothly declining spread of outliers. There are no
objects outside the range of redshifts plotted. [See the electronic edition of the
Journal for a color version of this figure.]
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with high �z. The scattering of outliers obtained by the IB is
similar in form to that seen in other studies for normal galaxies
at redshifts of z P 1 (see, for example, Fig. 3 of Ball et al. [2004]
for SDSS Main Sample galaxies, which have a mean redshift
of z � 0:1), although there is still structure seen in Figure 1,
especially at zspecP 1 and �2.2.

We have also implemented the methods of W04 on the SDSS
DR3, without removing the reddened quasars (N. E. Strand 2007,
in preparation). Here we apply that method to the SDSSDR5 data
set as a direct comparison between the empirical CZR and the IB.
We find that the CZR has slightly narrower dispersion than the
IB, with�z percentages of 63:9% � 0:3%, 80:2% � 0:4%, and
85:7% � 0:3% within �z < 0:1, 0.2, and 0.3. However, as
shown in Figure 3, it still shows regions of catastrophic failure.
The variance is therefore significantly higher, at �2 ¼ 0:265 �
0:006. We again plot the run from the 10 with the closest var-
iance to the mean. In this case, this was the final run of the 10,
with �2 ¼ 0:2653.

Previous results using empirical CZRs show a similar pat-
tern. For example, Figure 4 of W04 shows regions of quasars at
0 P zphot P 1 and 1:5 P zphot P 4:5 over the spectroscopic red-
shift range 0 P zspec P 4. Similar results are seen in Budavári
et al. (2001), Richards et al. (2001), and Wu et al. (2004).

4.2. SDSS DR5+GALEX GR2

Adding theGALEX data significantly improves the results, as
shown in Figures 4 and 5. Here we obtain a variance of 0:054 �
0:005 for the pseudoblind test, 70:8% � 1:2%, 85:8% � 1:0%,
and 90:8% � 0:7% of objects within �z < 0:1, 0.2, and 0.3,
�2
z ¼ 0:014� 0:002, and themean�z/(1þ z) ¼ 0:060 � 0:003.
The number of nearest neighbors and distance weighting are

17 � 5 and 4:4 � 0:8, respectively. A higher distance weight-
ing is expected due to the greater dimensionality of the training
feature space (21 colors instead of 16) compared to the SDSS

data set. The exact values of NN and DW that are plotted in
Figure 4 are chosen in the same manner as for the SDSS and are
NN ¼ 12, DW ¼ 5 and a random seed of 3. The variance is
0.0521.
To show that the improvement is not simply due to the

smaller set of objects that appear in both surveys (for example,

Fig. 2.—Effect of varying the number of nearest neighbors (NN) and the
distance weighting (DW) of the instance-based learner for the pseudoblind test
on the SDSS DR5 data set, showing the mean from 10 different training to
pseudoblind test splits of the data with a varying random seed. The model that
gives the lowest variance is marked with 1 � error bars. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 3.—As in Fig. 1, but showing the results for the CZR photometric
redshifts. The regions of catastrophic failure are seen, and the overall variance is
�2 ¼ 0:265 � 0:006. The values of zphot resulting from this method are in bins
of width 0.05. Here a uniformly distributed random offset up to�0.025 has been
added to the values of zphot for clarity. [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 4.—As in Fig. 1, but showing the results for 1528 of 7642 quasars
present in the SDSS DR5 cross-matched to the GALEX GR2. The variance is
improved to �2 ¼ 0:054 � 0:005. [See the electronic edition of the Journal for a
color version of this figure.]
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these objects may be brighter quasars in the SDSS with better
photometry), we also applied the SDSS training procedure to
the cross-matched sample. This gives better results than the SDSS
sample, but they are still significantly worse than SDSS+GALEX.
The variance is �2 ¼ 0:090 � 0:007, and the other results are as
seen in Table 1.

The SDSS results extend deeper than those matched with
GALEX, to z P 6 rather than z P 3:5. The lack of quasars in the
‘‘redshift desert’’ at z k 2:2 is seen in Figure 4, caused by the
Lyman break in the spectrum at a rest-frame wavelength of 9128
being shifted out of the UV.

The CZR results for SDSS+GALEX also improve over those
from the full SDSS data set; 74:9% � 1:4%, 86:9% � 0:6%,
and 91:0% � 0:8% of the objects are within�z < 0:1, 0.2, and
0.3, respectively. This is still slightly better than IB for�z < 0:1
and �z < 0:2, but is the same for �z < 0:3.

4.3. Genetic Algorithms

The application of the genetic algorithms to the SDSS,
SDSS+GALEX, and GALEX-SDSS-only data sets converged on
the use of approximately half of the training parameters, but the
variance was not significantly different from that from using the
full set of training features. The full sets were therefore used
throughout. The result indicates that there is some redundancy
in the training features, which is expected, given that they are
measuring the four colors four different times, just through dif-
ferent apertures.

5. DISCUSSION

Although the results here represent an important step in the
sense that there are no regions of catastrophic failure, further
improvement is still possible. In particular: (1) The input object
parameter distributionsmay be generalized into the form of a PDF
for each object, which can be propagated through the learning
process, tomakemore explicit those objects for which the redshift
is less certain, to take into account the error on each parameter, and
to output a PDF for each object instead of a scalar value. (2) The

noncatastrophics of the instance-based and the lower dispersion at
low values of�z of the CZR can be combined into a new learning
algorithm. The IB is in fact able to obtain results similar to the
CZR (i.e., an approximately 5% narrower dispersion and regions
of catastrophic failure instead of a spread of objects) by using the
single nearest neighbor instead of k nearest neighbors. (3) The
addition of other multiwavelength training data, such as infrared
data from UKIDSS (Lawrence et al. 2006) and Spitzer (Werner
et al. 2004), can be included in the training process.

We also obtained quasar photometric redshifts using decision
trees, as used in Ball et al. (2006) for star-galaxy separation. The
variances obtained were generally comparable to, but slightly
worse than, those for instance-based, and are, therefore, not
reported here.

6. CONCLUSIONS

We apply instance-based machine learning to 55,746 objects
spectroscopically classified as quasars in the Fifth Data Release
of the Sloan Digital Sky Survey (SDSS) and to 7642 objects
cross-matched from this sample to the Second Data Release of
the Galaxy Evolution Explorer legacy data (SDSS+GALEX ).
The algorithm is able to assign photometric redshifts to quasars
without regions of catastrophic failure, unlike previously pub-
lished results. This will enable samples of quasars to be con-
structed for cosmological studies with minimal contamination
from objects at severely incorrect redshifts. We obtain, for the
same data, empirical color-redshift relations with full proba-
bility distributions and find that these are similar to previous
results in the literature.

For SDSS, we find a photometric to spectroscopic variance of
0:123 � 0:002 for a sample of the data not used in the training.
For SDSS+GALEX, this improves to 0:054 � 0:005.Using purely
SDSS on the latter data set (GALEX-SDSS-only), the variance is
0:090 � 0:007. Hence the improvement results from the extraUV
information provided byGALEX and not the reduced sample size,
better photometry, or lower redshifts. The percentages of ob-
jects within �z < 0:1 are 54:9% � 0:7%, 70:8% � 1:2%, and
62:0% � 1:4% for SDSS, SDSS+GALEX, and GALEX-SDSS-
only, respectively. Each set of results represents a realistic stan-
dard for application to further data sets of which the spectra are
representative.
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